Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
2.
Clin Anat ; 37(4): 440-454, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38217386

RESUMEN

An intricate meshwork of trabeculations lines the luminal side of cardiac ventricles. Compaction, a developmental process, is thought to reduce trabeculations by adding them to the neighboring compact wall which is then enlarged. When pig, a plausible cardiac donor for xenotransplantation, is compared to human, the ventricular walls appear to have fewer trabeculations. We hypothesized the trabecular volume is proportionally smaller in pig than in human. Macroscopically, we observed in 16 pig hearts that the ventricular walls harbor few but large trabeculations. Close inspection revealed a high number of tiny trabeculations, a few hundred, within the recesses of the large trabeculations. While tiny, these were still larger than embryonic trabeculations and even when considering their number, the total tally of trabeculations in pig was much fewer than in human. Volumetrics based on high-resolution MRI of additional six pig hearts compared to six human hearts, revealed the left ventricles were not significantly differently trabeculated (21.5 versus 22.8%, respectively), and the porcine right ventricles were only slightly less trabeculated (42.1 vs 49.3%, respectively). We then analyzed volumetrically 10 pig embryonic hearts from gestational day 14-35. The trabecular and compact layer always grew, as did the intertrabecular recesses, in contrast to what compaction predicts. The proportions of the trabecular and compact layers changed substantially, nonetheless, due to differences in their growth rate rather than compaction. In conclusion, processes that affect the trabecular morphology do not necessarily affect the proportion of trabecular-to-compact myocardium and they are then distinct from compaction.


Asunto(s)
Ventrículos Cardíacos , Corazón , Humanos , Animales , Porcinos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/anatomía & histología , Corazón/anatomía & histología , Miocardio
3.
J Anat ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38284175

RESUMEN

That the highly trabeculated ventricular walls of the developing embryos transform to the arrangement during the fetal stages, when the mural architecture is dominated by the thickness of the compact myocardium, has been explained by the coalescence of trabeculations, often erroneously described as 'compaction'. Recent data, however, support differential rates of growth of the trabecular and compact layers as the major driver of change. Here, these processes were assessed quantitatively and visualized in standardized views. We used a larger dataset than has previously been available of mouse hearts, covering the period from embryonic day 10.5 to postnatal day 3, supported by images from human hearts. The volume of the trabecular layer increased throughout development, in contrast to what would be expected had there been 'compaction'. During the transition from embryonic to fetal life, the rapid growth of the compact layer diminished the proportion of trabeculations. Similarly, great expansion of the central cavity reduced the proportion of the total cavity made up of intertrabecular recesses. Illustrations of the hearts with the median value of left ventricular trabeculation confirm a pronounced growth of the compact wall, with prominence of the central cavity. This corresponds, in morphological terms, to a reduction in the extent of the trabecular layer. Similar observations were made in the human hearts. We conclude that it is a period of comparatively slow growth of the trabecular layer, rather than so-called compaction, that is the major determinant of the changing morphology of the ventricular walls of both mouse and human hearts.

4.
Physiology (Bethesda) ; 39(2): 0, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085014

RESUMEN

The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.


Asunto(s)
Boidae , Digestión , Corazón , Humanos , Digestión/fisiología , Corazón/fisiología , Hipertrofia , Hemodinámica
5.
Heliyon ; 9(10): e20575, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842578

RESUMEN

The left atrial auricle (LAA) is the main source of intracardiac thrombi, which contribute significantly to the total number of stroke cases. It is also considered a major site of origin for atrial fibrillation in patients undergoing ablation procedures. The LAA is known to have a high degree of morphological variability, with shape and structure identified as important contributors to thrombus formation. A detailed understanding of LAA form, dimension, and function is crucial for radiologists, cardiologists, and cardiac surgeons. This review describes the normal anatomy of the LAA as visualized through multiple imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and echocardiography. Special emphasis is devoted to a discussion on how the morphological characteristics of the LAA are closely related to the likelihood of developing LAA thrombi, including insights into LAA embryology.

6.
J Anat ; 243(6): 1052-1058, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37533305

RESUMEN

Dextrocardia is a rare congenital malformation in humans in which most of the heart mass is positioned in the right hemithorax rather than on the left. The heart itself may be normal and dextrocardia is sometimes diagnosed during non-related explorations. A few reports have documented atypical positions of the cardiac chambers in farmed teleost fish. Here, we report the casual finding of a left-right mirrored heart in an 85 cm long wild-caught spiny dogfish (Squalus acanthias) with several organ malformations. Macroscopic observations showed an outflow tract originating from the left side of the ventricular mass, rather than from the right. Internal inspection revealed the expected structures and a looped cavity. The inner curvature of the loop comprised a large trabeculation, the bulboventricular fold, as expected. The junction between the sinus venosus and the atrium appeared normal, only mirrored. MRI data acquired at 0.7 mm isotropic resolution and subsequent 3D-modeling revealed the atrioventricular canal was to the right of the bulboventricular fold, rather than on the left. Spurred by the finding of dextrocardia in the shark, we revisit our previously published material on farmed Adriatic sturgeon (Acipenser naccarii), a non-teleost bony fish. We found several alevins with inverted (left-loop) hearts, amounting to an approximate incidence of 1%-2%. Additionally, an adult sturgeon measuring 90 cm in length showed abnormal topology of the cardiac chambers, but normal position of the abdominal organs. In conclusion, left-right mirrored hearts, a setting that resembles human dextrocardia, can occur in both farmed and wild non-teleost fish.


Asunto(s)
Dextrocardia , Defectos de los Tabiques Cardíacos , Animales , Humanos , Atrios Cardíacos/diagnóstico por imagen , Tórax , Peces
7.
Mycologia ; 115(5): 648-660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37478014

RESUMEN

In Polyporales, the pore field immediately behind the basidiocarp margin may configure the hymenophore. Basidiocarp growth is not restricted to the margin, however. Here, the importance of the pore field was assessed from two years' of observations on naturally occurring oak mazegill (Daedalea quercina, Polyporales) basidiocarps and tested by experimental perturbations in natural habitats. Oak mazegill was chosen because the formed hymenophore has a unique and stable combination of poroid and lamellate features. Whether the pore field is required for basidiocarp growth was tested in 10 basidiocarps in which one side was resected. New growth was observed in six basidiocarps, and it occurred equally from the cut hymenophore and the intact pore field. New formation of hymenophore and pileus even occurred in seven out of 10 basidiocarps that had the entire pore field resected. Whether the hymenophore is configured permanently was tested on 54 basidiocarps on 10 trunks that were turned upside down. A new hymenophore grew through the old pileus, often far from the pore field, and its hymenophore configuration was invariably poroid despite the old hymenophore had lamellate features. In 48 experimentally banded basidiocarps, new hymenophore grew in the insertion hole of the band despite this being far from the pore field. The banded basidiocarps grew at an average rate of 5 mm per year. In conclusion, the capacity to configure the hymenophore is not confined to the pore field and it could be broadly present in the basidiocarp, possibly due to ubiquitous hyphal totipotency.


Asunto(s)
Basidiomycota , Polyporales , Quercus , Polyporales/genética , Cuerpos Fructíferos de los Hongos
10.
Science ; 380(6645): eadg2748, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167376

RESUMEN

Trinajstic et al., (Science, 16 September 2022, p. 1311-1314) describe exceptionally well-preserved organs in fossilized Devonian placoderms to infer the early evolution of the vertebrate heart. We argue that the report has numerous shortcomings and examples of mixed specimen codes. Further, we question whether there indeed is any evidence for a mineralized chambered heart in these placoderms.

11.
JACC Cardiovasc Imaging ; 16(3): 408-425, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36764891

RESUMEN

Excessive trabeculation, often referred to as "noncompacted" myocardium, has been described at all ages, from the fetus to the adult. Current evidence for myocardial development, however, does not support the formation of compact myocardium from noncompacted myocardium, nor the arrest of this process to result in so-called noncompaction. Excessive trabeculation is frequently observed by imaging studies in healthy individuals, as well as in association with pregnancy, athletic activity, and with cardiac diseases of inherited, acquired, developmental, or congenital origins. Adults with incidentally noted excessive trabeculation frequently require no further follow-up based on trabecular pattern alone. Patients with cardiomyopathy and excessive trabeculation are managed by cardiovascular symptoms rather than the trabecular pattern. To date, the prognostic role of excessive trabeculation in adults has not been shown to be independent of other myocardial disease. In neonates and children with excessive trabeculation and normal or abnormal function, clinical caution seems warranted because of the reported association with genetic and neuromuscular disorders. This report summarizes the evidence concerning the etiology, pathophysiology, and clinical relevance of excessive trabeculation. Gaps in current knowledge of the clinical relevance of excessive trabeculation are indicated, with priorities suggested for future research and improved diagnosis in adults and children.


Asunto(s)
Cardiomiopatías , Cardiopatías , No Compactación Aislada del Miocardio Ventricular , Adulto , Niño , Recién Nacido , Humanos , Ventrículos Cardíacos/diagnóstico por imagen , Valor Predictivo de las Pruebas , Miocardio , Cardiomiopatías/diagnóstico por imagen , Diagnóstico por Imagen , No Compactación Aislada del Miocardio Ventricular/diagnóstico por imagen , No Compactación Aislada del Miocardio Ventricular/terapia
12.
Biomater Adv ; 146: 213284, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682202

RESUMEN

Major challenges in developing implanted neural stimulation devices are the invasiveness, complexity, and cost of the implantation procedure. Here, we report an injectable, nanofibrous 2D flexible hydrogel sheet-based neural stimulation device that can be non-invasively implanted via syringe injection for optoelectrical and biochemical dual stimulation of neuron. Specifically, methacrylated gelatin (GelMA)/alginate hydrogel nanofibers were mechanically reinforced with a poly(lactide-co-ε-caprolactone) (PLCL) core by coaxial electrospinning. The lubricant hydrogel shell enabled not only injectability, but also facile incorporation of functional nanomaterials and bioactives. The nanofibers loaded with photocatatlytic g-C3N4/GO nanoparticles were capable of stimulating neural cells via blue light, with a significant 36.3 % enhancement in neurite extension. Meanwhile, the nerve growth factor (NGF) loaded nanofibers supported a sustained release of NGF with well-maintained function to biochemically stimulate neural differentiation. We have demonstrated the capability of an injectable, hydrogel nanofibrous, neural stimulation system to support neural stimulation both optoelectrically and biochemically, which represents crucial early steps in a larger effort to create a minimally invasive system for neural stimulation.


Asunto(s)
Nanofibras , Hidrogeles/farmacología , Factor de Crecimiento Nervioso/farmacología , Neuronas , Prótesis e Implantes
13.
J Cardiol ; 81(6): 499-507, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36481300

RESUMEN

In gestation, the coronary circulation develops initially in the compact layer and it expands only in fetal development to the trabeculations. Conflicting data have been published as to whether the trabecular layer is hypoperfused relative to the compact wall after birth. If so, this could explain the poor pump function in patients with left ventricular excessive trabeculation, or so-called noncompaction. Here, we review direct and indirect assessments of myocardial perfusion in normal and excessively trabeculated hearts by in vivo imaging by magnetic resonance imaging (MRI), positron emission tomography (PET)/single photon emission computed tomography (SPECT), and echocardiography in addition to histology, injections of labelled microspheres in animals, and electrocardiography. In MRI, PET/SPECT, and echocardiography, flow of blood or myocardial uptake of blood-borne tracer molecules are measured. The imaged trabecular layer comprises trabeculations and blood-filled intertrabecular spaces whereas the compact layer comprises tissue only, and spatio-temporal resolution likely affects measurements of myocardial perfusion differently in the two layers. Overall, studies measuring myocardial uptake of tracers (PET/SPECT) suggest trabecular hypoperfusion. Studies measuring the quantity of blood (echocardiography and MRI) suggest trabecular hyperperfusion. These conflicting results are reconciled if the low uptake from intertrabecular spaces in PET/SPECT and the high signal from intertrabecular spaces in MRI and echocardiography are considered opposite biases. Histology on human hearts reveal a similar capillary density of trabecular and compact myocardium. Injections of labelled microspheres in animals reveal a similar perfusion of trabecular and compact myocardium. In conclusion, trabecular and compact muscle are likely equally perfused in normal hearts and most cases of excessive trabeculation.


Asunto(s)
Corazón , Imagen de Perfusión Miocárdica , Animales , Humanos , Corazón/diagnóstico por imagen , Miocardio/patología , Ventrículos Cardíacos , Electrocardiografía , Tomografía Computarizada de Emisión de Fotón Único , Perfusión
14.
Sci Rep ; 12(1): 20491, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443330

RESUMEN

Few experimental model systems are available for the rare congenital heart diseases of double inlet left ventricle (DILV), a subgroup of univentricular hearts, and excessive trabeculation (ET), or noncompaction. Here, we explore the heart of the axolotl salamander (Ambystoma mexicanum, Shaw 1789) as model system of these diseases. Using micro-echocardiography, we assessed the form and function of the heart of the axolotl, an amphibian, and compared this to human DILV (n = 3). The main finding was that both in the axolotl and DILV, blood flows of disparate oxygen saturation can stay separated in a single ventricle. In the axolotl there is a solitary ventricular inlet and outlet, whereas in DILV there are two separate inlets and outlets. Axolotls had a lower resting heart rate compared to DILV (22 vs. 72 beats per minute), lower ejection fraction (47 vs. 58%), and their oxygen consumption at rest was higher than peak oxygen consumption in DILV (30 vs. 17 ml min-1 kg-1). Concerning the ventricular myocardial organization, histology showed trabeculations in ET (n = 5) are much closer to the normal human setting than to the axolotl setting. We conclude that the axolotl heart resembles some aspects of DILV and ET albeit substantial species differences exist.


Asunto(s)
Anomalías Cardiovasculares , Corazón Univentricular , Humanos , Animales , Ambystoma mexicanum , Urodelos , Corazón
15.
iScience ; 25(11): 105393, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345331

RESUMEN

Trabecular myocardium makes up most of the ventricular wall of the human embryo. A process of compaction in the fetal period presumably changes ventricular wall morphology by converting ostensibly weaker trabecular myocardium into stronger compact myocardium. Using developmental series of embryonic and fetal humans, mice and chickens, we show ventricular morphogenesis is driven by differential rates of growth of trabecular and compact layers rather than a process of compaction. In mouse, fetal cardiomyocytes are relatively weak but adult cardiomyocytes from the trabecular and compact layer show an equally large force generating capacity. In fetal and adult humans, trabecular and compact myocardium are not different in abundance of immunohistochemically detected vascular, mitochondrial and sarcomeric proteins. Similar findings are made in human excessive trabeculation, a congenital malformation. In conclusion, trabecular and compact myocardium is equally equipped for force production and their proportions are determined by differential growth rates rather than by compaction.

16.
Ecol Evol ; 12(11): e9476, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36381397

RESUMEN

The group Anguimorpha represents one of the most unified squamate clades in terms of body plan, ecomorphology, ecophysiology and evolution. On the other hand, the anguimorphs vary between different habitats and ecological niches. Therefore, we focused on the group Anguimorpha to test a possible correlation between heart morphology and ecological niche with respect to phylogenetic position in Squamata with Sphenodon, Salvator, and Pogona as the outgroups. The chosen lepidosaurian species were investigated by microCT. Generally, all lepidosaurs had two well-developed atria with complete interatrial septum and one ventricle divided by ventricular septa to three different areas. The ventricles of all lepidosaurians had a compact layer and abundant trabeculae. The compact layer and trabeculae were developed in accordance with particular ecological niche of the species, the trabeculae in nocturnal animals with low metabolism, such as Sphenodon, Heloderma or Lanthanotus were more massive. On the other hand athletic animals, such as varanids or Salvator, had ventricle compartmentalization divided by three incomplete septa. A difference between varanids and Salvator was found in compact layer thickness: thicker in monitor lizards and possibly linked to their mammalian-like high blood pressure, and the level of ventricular septation. In summary: heart morphology varied among clades in connection with the ecological niche of particular species and it reflects the phylogenetic position in model clade Anguimorpha. In the absence of fossil evidence, this is the closest approach how to understand heart evolution and septation in clade with different cardiac compartmentalization levels.

17.
J Anat ; 241(2): 535-544, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35412658

RESUMEN

Non-crocodylian reptiles have hearts with a single ventricle, which is partially separated by a muscular ridge that provides some separation of blood flows. An exceptional situation exists in monitor lizards and pythons, where the ventricular left side generates a much higher systolic blood pressure than the right side, thus resembling mammals and birds. This functional division of the ventricle depends on a large muscular ridge and may relate to high metabolic demand. The large leatherback turtle (<1000 kg), with its extensive migrations and elevated body temperatures, may have similar adaptations. We report on the anatomy of the hearts of two leatherback turtles. One stranded in Ballum, Denmark in 2020, and was examined in detail, supplemented by observations and photos of an additional stranding specimen from Canada. The external morphology of the leatherback heart resembles that of other turtles, but it is large. We made morphometric measurements of the Ballum heart and created an interactive 3D model using high-resolution MRI. The volume of the ventricle was 950 ml, from a turtle of 300 kg, which is proportionally almost twice as large as in other reptiles. The Ballum heart was compared to MRI scans of the hearts of a tortoise, a python, and a monitor lizard. Internally, the leatherback heart is typical of non-crocodylian reptiles and did not contain the well-developed septation found in pythons and monitor lizards. We conclude that if leatherback turtles have exceptional circulation needs, they are sustained with a relatively large but otherwise typical non-crocodylian reptile heart.


Asunto(s)
Lagartos , Tortugas , Animales , Corazón/anatomía & histología , Ventrículos Cardíacos , Hemodinámica , Mamíferos
18.
J Anat ; 241(1): 173-190, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35128670

RESUMEN

Shrews occupy the lower extreme of the seven orders of magnitude mammals range in size. Their hearts are large relative to body weight and heart rate can exceed a thousand beats a minute. It is not known whether traits typical of mammal hearts scale to these extremes. We assessed the heart of three species of shrew (genus Sorex) following the sequential segmental analysis developed for human hearts. Using micro-computed tomography, we describe the overall structure and find, in agreement with previous studies, a large and elongate ventricle. The atrial and ventricular septums and the atrioventricular (AV) and arterial valves are typically mammalian. The ventricular walls comprise mostly compact myocardium and especially the right ventricle has few trabeculations on the luminal side. A developmental process of compaction is thought to reduce trabeculations in mammals, but in embryonic shrews the volume of trabeculations increase for every gestational stage, only slower than the compact volume. By expression of Hcn4, we identify a sinus node and an AV conduction axis which is continuous with the ventricular septal crest. Outstanding traits include pulmonary venous sleeve myocardium that reaches farther into the lungs than in any other mammals. Typical proportions of coronary arteries-to-aorta do not scale and the shrew coronary arteries are proportionally enormous, presumably to avoid the high resistance to blood flow of narrow vessels. In conclusion, most cardiac traits do scale to the miniscule shrews. The shrew heart, nevertheless, stands out by its relative size, elongation, proportionally large coronary vessels, and extent of pulmonary venous myocardium.


Asunto(s)
Ventrículos Cardíacos , Corazón , Animales , Vasos Coronarios/anatomía & histología , Corazón/anatomía & histología , Atrios Cardíacos , Frecuencia Cardíaca , Humanos , Musarañas , Microtomografía por Rayos X
20.
Pediatr Cardiol ; 43(4): 796-806, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34988599

RESUMEN

Tricuspid valve agenesis/atresia (TVA) is a congenital cardiac malformation where the tricuspid valve is not formed. It is hypothesized that TVA results from a failure of the normal rightward expansion of the atrioventricular canal (AVC). We tested predictions of this hypothesis by morphometric analyses of the AVC in fetal hearts. We used high-resolution MRI and ultrasonography on a post-mortem fetal heart with TVA and with tricuspid valve stenosis (TVS) to validate the position of measurement landmarks that were to be applied to clinical echocardiograms. This revealed a much deeper right atrioventricular sulcus in TVA than in TVS. Subsequently, serial echocardiograms of in utero fetuses between 12 and 38 weeks of gestation were included (n = 23 TVA, n = 16 TVS, and n = 74 controls) to establish changes in AVC width and ventricular dimensions over time. Ventricular length and width and estimated fetal weight all increased significantly with age, irrespective of diagnosis. Heart rate did not differ between groups. However, in the second trimester, in TVA, the ratio of AVC to ventricular width was significantly lower compared to TVS and controls. This finding supports the hypothesis that TVA is due to a failed rightward expansion of the AVC. Notably, we found in the third trimester that the AVC to ventricular width normalized in TVA fetuses as their mitral valve area was greater than in controls. Hence, TVA associates with a quantifiable under-development of the AVC. This under-development is obscured in the third trimester, likely because of adaptational growth that allows for increased stroke volume of the left ventricle.


Asunto(s)
Atresia Pulmonar , Atresia Tricúspide , Ecocardiografía , Femenino , Corazón Fetal/diagnóstico por imagen , Humanos , Embarazo , Atresia Pulmonar/complicaciones , Atresia Tricúspide/complicaciones , Válvula Tricúspide/diagnóstico por imagen , Ultrasonografía Prenatal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...